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ABSTRACT

In this paper, a new noise reduction algorithm is proposed. In general, an edge—high frequency information in
an image—would be filtered or suppressed after image smoothing. The noise would be attenuated, but the image
would lose its sharp information. This defect makes the post-processing harder. One new algorithm performs
connectivity analysis on edge-data to make sure that only isolated edge information that represents noise gets
filtered out, hence preserving the overall edge structure of the original image. The steps of new algorithm are
as follows. First, find the edge from the noisy image by multi-resolution analysis. Second, use connectivity
analysis to direct a mean filter to suppress the noise while preserving the edge information. In the first step,
we propose a new algorithm to find edges in a very noisy image. The algorithm is based on the analysis of a
group of multi-resolution images obtained by processing the original noisy image by different Gaussian filters.
After applied to a sequence of images of the same scene but with different signal-noise-ratio (snr), this method
is robust to remove noise and keep the edge. Also, through statistic analysis, there exists the regularity that
the parameters of the algorithm would be constant with varying images under the same snr.

Keywords: Noise Reduction, Edge Detection, Multi-resolution, Gaussian Filters, Connectivity Analysis

1. INTRODUCTION

Reducing the impact of noise on digital images has been an active topic of research through the years. Generally,
the techniques for noise reduction have been based on mathematical analysis of the systems used to generate
digital images, e.g., scanners and digital cameras. Based on this, system analysis allows one to develop image
restoration filters1, 2 that analyze the different sources of noise and reduce their effect. Other researchers found
some simple but effective method such as the mean, or smoothing, filter (MF) and the median filter3 to be
effective. While these techniques are quite useful, they have significant shortcomings in the presence of a high
level of noise. Several researchers have shown the importance of using edge primitives as a basis for recognition
in visual perception.4, 5 This edge pattern analysis cab be used for both automatic assessment of spatially
variable noise and as a foundation for new noise reduction methods.6

Recently, the trend in edge-detection is moving away from using neighborhood pixel differences to the
estimate of local derivatives for detecting intensity changes. More attention is being paid to edge feature
analysis, and, based on this, in trying to design new and effective noise reduction methods. Edges can be
divided into basic categories,7, 8 such as ramp, step, stair, and pulse: different types have different shapes.
These edges can be filtered with a Gaussian to estimate their slope.9, 10 Because noise can generally be assumed
to be independent of signal, have little regional connectivity, and have random orientation, its estimate would
be small under a Gaussian filter. Furthermore, it has been shown that the Gaussian is close to the optimal
operator for different edges.11

In this paper, a new noise suppression algorithm is introduced. The most common way of noise reduction
is to apply a low-pass filter to the noisy image. In general, this results in blurring or suppressing the edge
features—high frequency information—in the image. Thus, while the noise is attenuated, the image loses
sharpness and, hence, contrast. This trade-off between noise reduction and sharpness retention makes the use
of the image for post-processing tasks considerably harder. To compensate for this drawback Kao and Chen,12
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for example, have added an edge preserving stage in the processing approach. We have based our approach upon
the algorithm presented by Rahman et al.13 The premise of their approach to noise reduction is that the edges
in the image should be preserved, and connectivity analysis can be used to classify edge or noise. They replace
the pixels classified as “noise” by an average of their neighbors, hence reducing the the impact of noise at that
location. Our new algorithm performs connectivity analysis on edge-data to make sure that only isolated edge
information that represents noise gets filtered out, hence preserving the overall edge structure of the original
image. The steps of new algorithm are as follows.

1. Find edges in the noisy image by multi-resolution analysis.

2. Use connectivity analysis to direct a MF to suppress the noise while preserving the edge information.

In the design of the algorithm, we carefully took into account a well-balanced compromise between noise
reduction and feature preservation. The experimental results show that the proposed algorithm can improve
the quality of removing noise on the images corrupted by Gaussian noise even for very low snr values.

The organization of the rest of the paper is as follows. The details of the new algorithm are given in section 2.
Experimental results and analysis are shown in section 3. In section 4, the conclusions are presented.

2. ALGORITHM

Steps 1–3 that follow describe the edge-detection algorithm that has been adapted from Beltran et al.,9 and
step 4 describes the connectivity analysis that is used to perform edge-preserving noise reduction.

1. Generate the multi-scale image representations:

Gj(m,n) = G(m,n) ∗ Fj(m,n), j = 1, . . . , 6 (1)
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where σ1 is the standard deviation of F1(m,n), and can be varied depending upon the image under
consideration.

2. Each image Gj , j = 1, . . . , 6 has associated modulus Mj and phase Pj images. Mj and Pj are computed
as:
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where [ ]T indicates vector transposition.

3. The Mj and Pj images are used to obtain the edge using a top-down search algorithm. For a pixel to be
classified as an edge, it must satisfy the following two conditions:

Mj(m,n) > τm, AND (7)

Pj(m,n) ≈ Φ(m,n), j = 1, . . . , 6. (8)

where τm is a magnitude threshold value, and Φ(m,n) = P1(m,n). Equation 8 can be rewritten as
|Pj(m,n) − Φ(m,n)| < τp, j = 2, . . . , 6, where τp is a small threshold value to take into account the



discrete nature of the computation of the phase, Pj . If both conditions are satisfied, then pixel at (m,n)
in the noisy image would be judged to lie on an edge. Once the edge-pixel locations have been found, the
connectivity analysis is used to denoise the original image.

Using images from all 6 scales typically results in very thick edges because of the heavy blurring associated
with large values of j in Equation 2. Experimental results led to the employment of a 3-of-6 rule in which
we use a combination of 3 out of the 6 possible scales to generate the output image. Different results can be
obtained depending upon which scales are used. Small scales give finer edges but are more prone to letting
noise through. Larger scales eliminate the noise but produce thick edges. Once the three optimal scales
have been determined, a second variation results in producing better edge results. In this variation, we
accept a pixel to be an edge pixel if there is a large value at that location in 2-of-3 scales. The orientation
requirement is as before. This leads to more connected edges, but also allows more noise pixels to be
classified as edges. We also found through experiments that parameters, such as σ1, τm, and τp can be
kept constant for different images with the same signal-noise-ratio (snr). However, these values should
be adjusted as a function of the snr.

4. For each non-zero pixel in the edge image we perform connectivity analysis, i.e., check if there is another
edge in the edge image in a 3 × 3 neighborhood centered at that pixel. If there is another edge, the
non-zero pixel will be considered a signal edge, otherwise it would be considered as noise and eliminated.
This is similar to the analysis used for hysteresis thresholding in the Canny edge operator.11 Pixels that
are classified as noise are used to replace the pixel in the original image by the output of a 3 × 3 MF.

We compare the performance of the multi-resolution edge algorithm with three other edge segmentation
operators: (i) Sobel,3 (ii) 3 × 3 smallest difference-of-Gaussian, or, lateral-inhibition (LIH),14, 15 and (iii)
Canny.11 In each case, we perform connectivity analysis after edge detection to denoise the original image. We
discuss each of these algorithms in some detail in the following subsections. Their performance is shown in the
next section.

2.1. Sobel Operator

The Sobel operator is one of the most popular edge detection operators. In its simplest form, it consists of
two convolution kernels: one, SH is designed to detect primarily horizontal edges, and the other,SV , primarily
vertical edges.

Sx =





−1 −2 −1
0 0 0
1 2 1



 Sy =





−1 0 1
−2 0 2
−1 0 1



 (9)

The edge pixel, es(m,n), is then given by

es(m,n) = |G(m,n) ∗ Sx| + |G(m,n) ∗ Sy| (10)

where G(m,n) are the pixels from the input image, G.

2.2. Lateral Inhibition

The smallest difference-of-Gaussian (DOG), or the lateral inhibition (LIH), operator drives its origin from
the natural vision literature. The lateral inhibition terminology comes from its physical renditions, where a
positive center pixel in a 3 × 3 neighborhood is inhibited by all of its neighbors to produce a high pass signal.
Mathematically, the output of the LIH is given by:

el(m,n) = G(m,n) ∗ L (11)

where el(m,n) is the edge output, and

L =





−0.0675 −0.1820 −0.0675
−0.1820 1.0000 −0.1820
−0.0675 −0.1820 −0.0675



 . (12)



2.3. Canny Operator

The Canny operator is proposed by finding the optimization algorithm based upon three basic performance
criteria: good snr, good detection and localization, and only one response to a single edge. It is implemented
as the following four steps:

1. Smoothing the image using Gaussian filtering.

2. Calculating the gradient magnitude and direction by using first order finite differences.

3. Imposing non-maximum suppression on the gradient value.

4. Detecting and connecting the edges by using hysteresis thresholding.

3. RESULTS

We have tested our method on color and grayscale images with snrs varying from 1 to 10. The images used
in the experiments were computer generated so the baseline images were noise free. This allowed us to add
white Gaussian noise of varying amplitude to the data to generate images with a given mean-square snr. The
reason why we use these images is because the experimental results of the noise-reduction procedure can be
compared with the original image to get a reasonable metric of performance. Of course, in real-life situations,
we only have access to the noisy data so we cannot use fidelity analysis or other similar metrics to measure the
performance of our algorithm.

Figure 1 shows an original, noise-free, image G and three noisy images, Gn, with different snr values. In
general, except when the snr ≈ 1, traditional edge detection methods can be used to find the edges that have
been impacted by noise. Figure 2 shows Gj for the original noise free image, G, and Figure 3 shows the scaled
images for Gn1. The Fj used for these image were generated using σ1 = 2. This value of σ1 was deemed to be
optimal after conducting a series of experiments. As can be seen from Figures 2 and 3, while noise suppression
is small for j = 1, 2, 3, |Gj − Gn1j |, j = 4, 5, 6 is relatively small.

Figure 1. (top-left) Original image, G; (top-right) noisy image Gn10, snr = 10; (bottom-left) noisy image, Gn5 snr =
5; (bottom-right) noisy image, Gn1, snr = 1.



Figure 2: Scaled images for G.

Figure 3: Scaled images for Gn1.



From our experiments we determined that it is not necessary to use all six scaled images to obtain an edge
image: in general, three scales are enough. The question, then, is: which three scales should be used? From
Figure 3, we see that smaller σj keep the image sharp and noisy, and vice visa. Just using the smallest or
largest σj does not provide good performance. Larger σ1, such as the one shown in Figure 3 (bottom-right)
lose almost all the high frequency information and hardly gives any help for edge detection, a result confirmed
by experiment. In Figure 4, different combinations of scales are shown. In each case, three neighboring scaled
images were selected. We found that different combinations of scales required different values for τm and τp.
While we had to relax the requirement on τp, its impact on edge detection was not critical. However, varying
τm has a significant impact on the performance of the algorithm. Increasing τm removes more noise, but also
loses more edges.

Figure 4. The results of combination all 3 different layers. (left) 1, 2 and 3 layers, (center) 2, 3 and 4 layers, (right) 3,
4 and 5 layers.

Using the same σ1, another new scheme was introduced. A pixel at (m,n) was considered to be an edge
pixel if Mj(m,n) > τm for 2-of-3 scales, rather than for 3-of-3 scales as shown in Figure 4. Results for this
scheme are shown in Figure 5. While this new scheme leads to more connected edges, it also allows more noise
pixels to be classified as edges. However, the visual impact is better than the 3-of-3 scheme because the edges
are finer. The value for τm changes slightly for optimal results, but τp is the same as that used in Figure 4.

Figure 5. The results of combination 2 out of 3 different layers. (left) 1, 2 and 3 layers, (center) 2, 3 and 4 layers,
(right) 3, 4 and 5 layers.



For the 3-of-3 and 2-of-3 operators, using different Gaussian filters to suppress the noise would make the
edges thicker as σ1 increases. Thinner edges can be produced only at the cost of classifying more noise pixels as
edge pixels, especially for very low snrs. We have determined experimentally that if snr is > 10 higher, then
the proposed algorithms can produce edges that are as thin as those produced by traditional algorithms for the
noise-free case.

In order to evaluate the performance of proposed algorithm, we compare its performance with the traditional
methods described in Sections 2.1–2.3. The results are shown in Figure 6. Both 3-of-3, and 2-of-3 methods
produce similar results, though 2-of-3 classifies more pixels as edges, and is, hence, noisier. But, based on
connectivity analysis used to differentiate noise or edges, a little more noise and edges would be better for the
next processing step. The Sobel operator is badly affected by noise, as all noise causes an edge transition. LIH
seems to lose connectivity since it is primarily a point detector. The Canny operator is good at suppressing
noise and detecting edges because it uses a Gaussian filter to smooth the image first. However, the Canny
operator is very sensitive to the two thresholds used for hysteresis thresholding. This sensitivity results in a
number of small curves or projections for very low snrs. This impacts the denoising element of our proposed
algorithm.

Figure 6: (top-left) 3-of-3, (top-center) 2-of-3, (top-right) Sobel, (bottom-left) LIH, (bottom-right) Canny.

Figure 7 shows the edge images obtained with the methods used to generate Figure 6, but for the noise-free
case. In the noise-free image, all the methods get excellent results, with few differences in performance. Both
3-of-3 and 2-of-3 methods give similar results, but the edges for the 3-of-3 method are finer than those produced
by the 2-of-3 method. This is because fewer pixels are eliminated using Equation 8 for the 2-of-3 methods since
the comparison take place over fewer scales. Both methods produce edges that are thicker than those produced
by other algorithms. The Sobel operator correctly finds the edges in the image. However, the edges it produces
are thicker than those produced by the LIH and Canny operators. LIH marks the location of the edges precisely
and the edges are thin. Canny operator also performs well and produces thin edges.



Figure 7: (top-left) 3-of-3, (top-center) 2-of-3, (top-right) Sobel, (bottom-left) LIH, (bottom-right) Canny.

So far we have evaluated the impact of varying the number of scales and the parameters σ1, τm and τp

on the performance of the edge-detection algorithm. Recall, that the overall denoising process relies on the
edge-detection mechanism followed by noise suppression at those locations where edge pixels do not exist. We
also introduced the idea of edge connectivity analysis to determine which edge pixels were actually produced
due to noise. In order to determine the effectiveness of this approach, we performed two tests. In the first
case, we applied a blurring filter to every pixel that was not an edge pixel without performing edge connectivity
analysis to determine if it were a noise pixel or not. In the second case, we performed edge analysis and further
reduced the total number of edge pixels by those that were classified as noise. Figure 8 shows the output of
the full noise-reduction mechanism and also, as a final comparison, the noise-reduction achieved by applying
just the mean filter (MF). Experiments show that using edge analysis eliminates noise along the boundaries of
regions with intensity transitions and produces an overall less noisy image. However, the impact on sharpness
and contrast is minimal. The 3-of-3 and 2-of-3 methods are able to eliminate more noise than Sobel and LIH
because of better edge detection and localization. The performance of the Canny operator is similar to that of
the proposed method. The MF produces good results but the image is blurrier than the one produced by the
other methods.

A commonly used metric of similarity between two images G1 and G2 is the fidelity, F(G∞,G∈) defined as

F(G1, G2) = 1 −

M−1
∑

m=0

N−1
∑

n=0

(G1(m,n) − G2(m,n))
2

M−1
∑

m=0

N−1
∑

n=0

G1(m,n)2

. (13)

The fidelity metric corresponds fairly closely with visual judgment for comparing images. In order to measure



Figure 8. Figure 8. (top-row-left) 3-of-3 without edge analysis; (top-row-second) 3-of-3 with edge analysis; (top-
row-third) 2-of-3 without edge analysis; (top-row-right) 2-of-3 with edge analysis; (second-row-left) Sobel without edge
analysis; (second-row-second) Sobel with edge analysis; (second-row-third) LIH without edge analysis; (second-row-right)
LIH with edge analysis; (bottom-row-left) Canny with edge analysis; (bottom-row-second) Canny without edge analysis;
(bottom-row-right) MF.

the performance of our noise-reduction approach, we compute F(G,Gp), where Gp is variously produced by
edge-directed noise reduction using the Sobel, LIH, Canny, and our two methods, and G is the original noise-
free image. The results are tabulated in Table 1. Rahman et al13 reported that the median filter achieved the
best result. In this paper, we did not use the median filter, but we see that the MF performs as well as in
terms of fidelity as the edge-directed noise reduction. We can explain this (slightly) unexpected result by the
observation that fidelity is a gross measure of visual similarity so a blurred image compared with its original
unblurred version would result in high fidelity, while visual comparison may not come to the same conclusion.
The results show the proposed methods and Canny operator are effective in saving edges and removing noise.
Table1 also shows the effect of edge analysis. Under edge analysis, the fidelity results are better or the same as

Fidelity Original Noisy Image Sobel LIH Canny 3-of-3 2-of-3 MF
Image (snr = 1)

Without edge analysis 1.00 0.78 0.91 0.93 0.96 0.96 0.95 0.96
With edge analysis 1.00 0.78 0.93 0.94 0.96 0.96 0.96 0.96

Table 1: Fidelity improvement with noise reduction



those without edge analysis.

As we had stated in the beginning of this paper, we had found that the value of the parameters needed
to be changed depending upon the value of the snr. From observation we see that to find thinner edge σ1

should be decreased, and the τm should be increased otherwise more edges and more noise would be gotten. At
the same time, due to small σ1, the residual noise would be higher and affect the edges, making it harder to
differentiate the edges and noise. Under these conditions, though the edge might be thinner, the noise would
be worse not just crowded around the true edges but also spread in non-edge areas. However, since we do
not use all the scales, reducing sigma1 means that we may use a different set of scales that correspond to the
same σj values. So the overall impact of changing σ1 is in selecting different scale rather than changing overall
performance. However, the same cannot be said about τm. Figure 9 shows the impact increasing snr on the
threshold value. As snr increases, τm decreases. This make intuitive sense since less noise in the image (higher
snr) corresponds to fewer false edges in the image corresponding to noise and hence does not require a larger
threshold to eliminate such edges.

Figure 9: Threshold variation based on different snr: ∗ stands for the color image, and ◦ means the grayscale image.

4. CONCLUSION

In this paper we proposed an algorithm based on multi-resolution processing and edge analysis to help preserve
edge information during noise suppression. A group of Gaussian filters, proven to be close the optimal edge
operator, was used to generate the multi-resolution images from the noisy image. Based on analysis of those
different scaled images, pixels corresponding to true edges and noise can be obtained. After that, the edge
image is used to direct noise suppression using the MF. Connectivity analysis is used to further differentiate
edge pixels that are due to signal and those that are due to noise. Finally, the noise-reduced image is obtained.
Experiments show that this new algorithm is effective even for very low snr values.
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